How to extract multiple objects from an image using Python OpenCV?


I am trying to extract object from an image using the color using OpenCV, I have tried by inverse thresholding and grayscale combined with cv2.findContours() but I am unable to use it recursively. Furthermore I can’t figure out how to “cut out” the match from the original image and save it to a single file.

enter image here


import cv2
import numpy as np

# load the images
empty = cv2.imread("empty.jpg")
full = cv2.imread("test.jpg")

# save color copy for visualization
full_c = full.copy()

# convert to grayscale
empty_g = cv2.cvtColor(empty, cv2.COLOR_BGR2GRAY)
full_g = cv2.cvtColor(full, cv2.COLOR_BGR2GRAY)

empty_g = cv2.GaussianBlur(empty_g, (51, 51), 0)
full_g = cv2.GaussianBlur(full_g, (51, 51), 0)
diff = full_g - empty_g

#  thresholding

diff_th = 

# combine the difference image and the inverse threshold
zone = cv2.bitwise_and(diff, diff_th, None)

# threshold to get the mask instead of gray pixels
_, zone = cv2.threshold(bag, 100, 255, 0)

# dilate to account for the blurring in the beginning
kernel = np.ones((15, 15), np.uint8)
bag = cv2.dilate(bag, kernel, iterations=1)

# find contours, sort and draw the biggest one
contours, _ = cv2.findContours(bag, cv2.RETR_TREE,
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:3]
i = 0
while i < len(contours):
    x, y, width, height = cv2.boundingRect(contours[i])
    roi = full_c[y:y+height, x:x+width]
    cv2.imwrite("piece"+str(i)+".png", roi)
    i += 1

Where empty is just a white image size 1500 * 1000 as the one above and test is the one above.

This is what I came up with, only downside, I have a third image instead of only the 2 expected showing a shadow zone now…


Here’s a simple approach:

  1. Obtain binary image. Load the image, grayscale, Gaussian blur, Otsu’s threshold, then dilate to obtain a binary black/white image.

  2. Extract ROI. Find contours, obtain bounding boxes, extract ROI using Numpy slicing, and save each ROI

Binary image (Otsu’s thresholding + dilation)

enter image description here

Detected ROIs highlighted in green

enter image description here

To extract each ROI, you can find the bounding box coordinates using cv2.boundingRect(), crop the desired region, then save the image

x,y,w,h = cv2.boundingRect(c)
ROI = original[y:y+h, x:x+w]

First object

Second object

import cv2

# Load image, grayscale, Gaussian blur, Otsu's threshold, dilate
image = cv2.imread('1.jpg')
original = image.copy()
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0)
thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7))
dilate = cv2.dilate(thresh, kernel, iterations=1)

# Find contours, obtain bounding box coordinates, and extract ROI
cnts = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
image_number = 0
for c in cnts:
    x,y,w,h = cv2.boundingRect(c)
    cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
    ROI = original[y:y+h, x:x+w]
    cv2.imwrite("ROI_{}.png".format(image_number), ROI)
    image_number += 1

cv2.imshow('image', image)
cv2.imshow('thresh', thresh)
cv2.imshow('dilate', dilate)

Answered By – nathancy

Answer Checked By – Mary Flores (AngularFixing Volunteer)

Leave a Reply

Your email address will not be published.