Html canvas, pixel manipulation and alpha channel

Issue

In html canvas, what I want to achieve is a white noise effect on a picture. So I get the picture, get its ImageData, modify it’s alpha and draw it back.

var bat = new Image();
bat.src = ""

var canvas = document.getElementById('canvas');
var ctx = canvas.getContext('2d');

canvas.width = 250;
canvas.height = 250;

function animate() {
  ctx.clearRect(0, 0, canvas.width, canvas.height);

  ctx.drawImage(bat, 0, 0);

  var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);

  var data = imageData.data;

  for (let i = 0; i < data.length; i += 4) {
    if (data[i] != 0 || data[i + 1] != 0 || data[i + 2] != 0) {
      data[i + 3] = Math.floor(Math.random() * 255);
    }
  }

  ctx.putImageData(imageData, 0, 0);

  requestAnimationFrame(animate);
}



animate();
<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta http-equiv="X-UA-Compatible" content="IE=edge" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Bat</title>
    <link rel="stylesheet" href="style.css" />
    <style>
      #main {
        display: flex;
        flex-direction: row;
      }
      #canvas {
        border: 1px solid black;
        width: 150px;
        height: 150px;
      }
    
    </style>
  </head>

  <body>
    <div id="main">
      <canvas id="canvas"></canvas>
      <br />
      
    </div>

    <script src="script.js"></script>
  </body>
</html>

The result is what I need. But the issue is that when you use putImageData, even if the alpha is 0, it won’t be transparent.

So I use a temporary canvas, draw the picture on it, modify it and then draw it back on the canvas.

var bat = new Image();
bat.src = "";

var canvas2 = document.getElementById('canvas2');
var ctx2 = canvas2.getContext('2d');

var tempCanvas = document.createElement('canvas');
var tempContext = tempCanvas.getContext('2d');

canvas2.width = 250;
canvas2.height = 250;

tempCanvas.width = 250;
tempCanvas.height = 250;

var img = new Image();

var alpha = 0;

function animate2() {
  alpha += 0.1;

  ctx2.clearRect(0, 0, canvas.width, canvas.height);

  ctx2.fillStyle = 'blue';
  ctx2.fillRect(0, 0, 250, 250);

  tempContext.drawImage(bat, 0, 0);

  var imageData = tempContext.getImageData(
    0,
    0,
    tempCanvas.width,
    tempCanvas.height
  );

  var data = imageData.data;

  for (let i = 0; i < data.length; i += 4) {
    if (data[i] != 0 || data[i + 1] != 0 || data[i + 2] != 0) {
      //data[i + 3] = Math.floor(Math.random() * 255);
      data[i + 3] = 123;
      //data[i + 3] = alpha;
    }
  }

  tempContext.putImageData(imageData, 0, 0);

  img.src = tempCanvas.toDataURL('image/png');

  ctx2.drawImage(img, 0, 0);

  requestAnimationFrame(animate2);
}

animate2();
<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta http-equiv="X-UA-Compatible" content="IE=edge" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Bat</title>
    <link rel="stylesheet" href="style.css" />
    <style>
      #main {
        display: flex;
        flex-direction: row;
      }
      
      #canvas2 {
        border: 1px solid black;
        width: 150px;
        height: 150px;
      }
    </style>
  </head>

  <body>
    <div id="main">
      <canvas id="canvas"></canvas>
      <br />
      <canvas id="canvas2"></canvas>
    </div>

    <script src="script.js"></script>
  </body>
</html>

But whenever I want to change the alpha randomly with:

data[i + 3] = Math.floor(Math.random() * 255);

The picture won’t display. And if I want to update the alpha other time with:

var alpha = 0;
alpha += 0.1
data[i + 3] = alpha;

The picture flickers…

What is the correct way to get my "white noise" picture that would be transparent so I can see the background through it?

Here is a link of a stackblitz with the demo in it.

Solution

First, don’t call getImageData every frame. All you need is to know where the black pixels are in the image, these won’t change so you can keep the same ImageData object all along, avoid slow read-backs from the GPU.

Then, you can drawImage() a canvas directly. No need to go through a new Image with a toDataURL() which will load your image async and indeed make your animation flicker.

So this would give:

var bat = new Image();
bat.src = "";

var canvas2 = document.getElementById('canvas2');
var ctx2 = canvas2.getContext('2d');

var tempCanvas = document.createElement('canvas');
var tempContext = tempCanvas.getContext('2d');

canvas2.width = 250;
canvas2.height = 250;

tempCanvas.width = 250;
tempCanvas.height = 250;
// store the ImageData in a way it's accessible at every frame
var imageData;
bat.onload = (evt) => { // always wait for the assets to load
  ctx2.drawImage(bat, 0, 0);
  imageData = ctx2.getImageData(0, 0, 250, 250);
  animate2();
}

var alpha = 0;

function animate2() {
  ctx2.clearRect(0, 0, canvas2.width, canvas2.height);

  ctx2.fillStyle = 'blue';
  ctx2.fillRect(0, 0, 250, 250);

  var data = imageData.data;

  for (let i = 0; i < data.length; i += 4) {
    if (data[i] != 0 || data[i + 1] != 0 || data[i + 2] != 0) {
      data[i + 3] = Math.floor(Math.random() * 255);
    }
  }

  tempContext.putImageData(imageData, 0, 0);
  // drawImage the tempCanvas directly
  ctx2.drawImage(tempCanvas, 0, 0);

  requestAnimationFrame(animate2);
}
#main {
    display: flex;
    flex-direction: row;
  }

  #canvas2 {
    border: 1px solid black;
    width: 150px;
    height: 150px;
  }
<div id="main">
  <canvas id="canvas2"></canvas>
</div>

But you don’t even need a second canvas here, you can draw "behind" the current drawing on a canvas thanks to the "destination-over" compositing mode. You can even use more compositing operations to clip that background so that only the image is "colored":

var bat = new Image();
bat.src = "";

var canvas2 = document.getElementById('canvas2');
var ctx2 = canvas2.getContext('2d');

canvas2.width = 250;
canvas2.height = 250;

// store the ImageData in a way it's accessible at every frame
var imageData;
bat.onload = (evt) => { // always wait for the assets to load
  ctx2.drawImage(bat, 0, 0);
  imageData = ctx2.getImageData(0, 0, 250, 250);
  animate2();
}

function animate2() {
  var data = imageData.data;

  for (let i = 0; i < data.length; i += 4) {
    if (data[i] != 0 || data[i + 1] != 0 || data[i + 2] != 0) {
      data[i + 3] = Math.floor(Math.random() * 255);
    }
  }
  ctx2.putImageData(imageData, 0, 0);

  ctx2.globalCompositeOperation = "destination-over"; // draw behind
  ctx2.fillStyle = 'blue';
  ctx2.fillRect(0, 0, 250, 250);
  ctx2.globalCompositeOperation = "destination-in"; // keep only where new pixels are opaque
  ctx2.drawImage(bat, 0, 0);
  ctx2.globalCompositeOperation = "source-over"; // default
  requestAnimationFrame(animate2);
}
#main {
    display: flex;
    flex-direction: row;
  }

  #canvas2 {
    border: 1px solid black;
    width: 150px;
    height: 150px;
    background: yellow
  }
<div id="main">
  <canvas id="canvas2"></canvas>
</div>

Answered By – Kaiido

Answer Checked By – David Marino (AngularFixing Volunteer)

Leave a Reply

Your email address will not be published.