Why not optimize hyperparameters on train dataset?

Issue

When developing a neural net one typically partitions training data into Train, Test, and Holdout datasets (many people call these Train, Validation, and Test respectively. Same things, different names). Many people advise selecting hyperparameters based on performance in the Test dataset. My question is: why? Why not maximize performance of hyperparameters in the Train dataset, and stop training the hyperparameters when we detect overfitting via a drop in performance in the Test dataset? Since Train is typically larger than Test, would this not produce better results compared to training hyperparameters on the Test dataset?

UPDATE July 6 2016

Terminology change, to match comment below. Datasets are now termed Train, Validation, and Test in this post. I do not use the Test dataset for training. I am using a GA to optimize hyperparameters. At each iteration of the outer GA training process, the GA chooses a new hyperparameter set, trains on the Train dataset, and evaluates on the Validation and Test datasets. The GA adjusts the hyperparameters to maximize accuracy in the Train dataset. Network training within an iteration stops when network overfitting is detected (in the Validation dataset), and the outer GA training process stops when overfitting of the hyperparameters is detected (again in Validation). The result is hyperparameters psuedo-optimized for the Train dataset. The question is: why do many sources (e.g. https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf, Section B.1) recommend optimizing the hyperparameters on the Validation set, rather than the Train set? Quoting from Srivasta, Hinton, et al (link above): “Hyperparameters were tuned on the validation set such that the best validation error was produced…

Solution

The reason is that developing a model always involves tuning its configuration: for example, choosing the number of layers or the size of the layers (called the hyper-parameters of the model, to distinguish them from the parameters, which are the network’s weights). You do this tuning by using as a feedback signal the performance of the model on the validation data. In essence, this tuning is a form of learning: a search for a good configuration in some parameter space. As a result, tuning the configuration of the model based on its performance on the validation set can quickly result in overfitting to the validation set, even though your model is never directly trained on it.

Central to this phenomenon is the notion of information leaks. Every time you tune a hyperparameter of your model based on the model’s performance on the validation set, some information about the validation data leaks into the model. If you do this only once, for one parameter, then very few bits of information will leak, and your validation set will remain reliable to evaluate the model. But if you repeat this many times—running one experiment, evaluating on the validation set, and modifying your model as a result—then you’ll leak an increasingly significant amount of information about the validation set into the model.

At the end of the day, you’ll end up with a model that performs artificially well on the validation data, because that’s what you optimized it for. You care about performance on completely new data, not the validation data, so you need to use a completely different, never-before-seen dataset to evaluate the model: the test dataset. Your model shouldn’t have had access to any information about the test set, even indirectly. If anything about the model has been tuned based on test set performance, then your measure of generalization will be flawed.

Answered By – Prakhar Agarwal

Answer Checked By – Willingham (AngularFixing Volunteer)

Leave a Reply

Your email address will not be published.